211 research outputs found

    Design and analysis of a control system for an optical delay-line circuit used as reconfigurable gain equalizer

    Get PDF
    The design and analysis of a control system for a coherent two-port lattice-form optical delay-line circuit used as reconfigurable gain equalizer is presented. The design of the control system, which is based on a real device model and a least-square optimization method, is described in detail. Analysis on a five-stage device for the 32 possible solutions of phase parameters showed that, for some filter characteristics, the variations in power dissipation can vary up to a factor of 2. Furthermore, the solution selection has influence on the optimization result and number of iterations needed. A sensitivity analysis of the phase parameters showed that the allowable error in the phase parameters should not exceed a standard deviation of /spl pi//500 in order to achieve a total maximal absolute accuracy error not greater than approximately 0.6 dB. A five-stage device has been fabricated using planar lightwave circuit technology that uses the thermooptic effect. Excellent agreement between simulations and measurements has been achieved

    Non-perturbative approaches to magnetism in strongly correlated electron systems

    Full text link
    The microscopic basis for the stability of itinerant ferromagnetism in correlated electron systems is examined. To this end several routes to ferromagnetism are explored, using both rigorous methods valid in arbitrary spatial dimensions, as well as Quantum Monte Carlo investigations in the limit of infinite dimensions (dynamical mean-field theory). In particular we discuss the qualitative and quantitative importance of (i) the direct Heisenberg exchange coupling, (ii) band degeneracy plus Hund's rule coupling, and (iii) a high spectral density near the band edges caused by an appropriate lattice structure and/or kinetic energy of the electrons. We furnish evidence of the stability of itinerant ferromagnetism in the pure Hubbard model for appropriate lattices at electronic densities not too close to half-filling and large enough UU. Already a weak direct exchange interaction, as well as band degeneracy, is found to reduce the critical value of UU above which ferromagnetism becomes stable considerably. Using similar numerical techniques the Hubbard model with an easy axis is studied to explain metamagnetism in strongly anisotropic antiferromagnets from a unifying microscopic point of view.Comment: 11 pages, Latex, and 6 postscript figures; Z. Phys. B, in pres

    Coexistence of solutions in dynamical mean-field theory of the Mott transition

    Full text link
    In this paper, I discuss the finite-temperature metal-insulator transition of the paramagnetic Hubbard model within dynamical mean-field theory. I show that coexisting solutions, the hallmark of such a transition, can be obtained in a consistent way both from Quantum Monte Carlo (QMC) simulations and from the Exact Diagonalization method. I pay special attention to discretization errors within QMC. These errors explain why it is difficult to obtain the solutions by QMC close to the boundaries of the coexistence region.Comment: 3 pages, 2 figures, RevTe

    Surface Instabilities and Magnetic Soft Matter

    Full text link
    We report on the formation of surface instabilities in a layer of thermoreversible ferrogel when exposed to a vertical magnetic field. Both static and time dependent magnetic fields are employed. Under variations of temperature, the viscoelastic properties of our soft magnetic matter can be tuned. Stress relaxation experiments unveil a stretched exponential scaling of the shear modulus, with an exponent of beta=1/3. The resulting magnetic threshold for the formation of Rosensweig-cusps is measured for different temperatures, and compared with theoretical predictions by Bohlius et. al. in J. Phys.: Condens. Matter., 2006, 18, 2671-2684.Comment: accepted to Soft Matte

    Quantum Monte Carlo calculation of the finite temperature Mott-Hubbard transition

    Full text link
    We present clear numerical evidence for the coexistence of metallic and insulating dynamical mean field theory(DMFT) solutions in a half-filled single-band Hubbard model with bare semicircular density of states at finite temperatures. Quantum Monte Carlo(QMC) method is used to solve the DMFT equations. We discuss important technical aspects of the DMFT-QMC which need to be taken into account in order to obtain the reliable results near the coexistence region. Among them are the critical slowing down of the iterative solutions near phase boundaries, the convergence criteria for the DMFT iterations, the interpolation of the discretized Green's function and the reduction of QMC statistical and systematic errors. Comparison of our results with those of other numerical methods is presented in a phase diagram.Comment: 4 pages, 5 figure

    Landau Theory of the Finite Temperature Mott Transition

    Full text link
    In the context of the dynamical mean-field theory of the Hubbard model, we identify microscopically an order parameter for the finite temperature Mott endpoint. We derive a Landau functional of the order parameter. We then use the order parameter theory to elucidate the singular behavior of various physical quantities which are experimentally accessible.Comment: 4 pages, 2 figure

    Effect of Blend Composition and Additives on the Morphology of PCPDTBT:PC71BM Thin Films for Organic Photovoltaics.

    Get PDF
    The use of solvent additives in the fabrication of bulk heterojunction polymer:fullerene solar cells allows to boost efficiencies in several low bandgap polymeric systems. It is known that solvent additives tune the nanometer scale morphology of the bulk heterojunction. The full mechanism of efficiency improvement is, however, not completely understood. In this work, we investigate the influences of blend composition and the addition of 3 vol % 1,8-octanedithiol (ODT) as solvent additive on polymer crystallization and both, vertical and lateral morphologies of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] and [6,6]-phenyl C71-butyric acid methyl ester (PCPDTBT:PC71BM) blend thin films processed from chlorobenzene-based solutions. The nanoscale morphology is probed with grazing incidence small- and wide-angle X-ray scattering as well as X-ray reflectivity and complemented with UV/vis spectroscopy. In PCPDTBT:PC71BM films the use of ODT is found to lower the solubility of fullerene in the polymer matrix and to promote polymer crystallization, both vertical and lateral microphase separation with morphological coarsening, and formation of a fullerene-rich topping layer. The enhanced photovoltaic performance is explained by these findings

    Fluctuation-driven insulator-to-metal transition in an external magnetic field

    Full text link
    We consider a model for a metal-insulator transition of correlated electrons in an external magnetic field. We find a broad region in interaction and magnetic field where metallic and insulating (fully magnetized) solutions coexist and the system undergoes a first-order metal-insulator transition. A global instability of the magnetically saturated solution precedes the local ones and is caused by collective fluctuations due to poles in electron-hole vertex functions.Comment: REVTeX 4 pages, 3 PS figure

    Comparison of Two Independent Lidar-Based Pitch Control Designs

    Full text link
    • …
    corecore